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An advanced theory of the strength of 
hybrid composites 

HIROSHI FUKUDA 
Institute of Interdisciplinary Research, University of Tokyo, 4-6-1 Komaba, Meguro-ku, 
Tokyo 153, Japan 

This paper proposes a statistical approach to the strength of a unidirectionally-arrayed 
hybrid sheet. This paper proposes of modification of the theory proposed by Zweben. 
The concept of the hybrid effect has been clarified and the present theory has been 
compared with experimental data. Quantitative evaluation of the hybrid effect and 
stress-strain behaviour of hybrids is possible, although there remain some discrepancies 
between experimental data and theoretical prediction. Stress (or strain) concentration 
factors and ineffective length around a discontinuous fibre are calculated in a more 
precise manner, which are used for a statistical approach. 

Nomenclature 
A cross-sectionalarea of a fibre 
d distance of fibres 
E Young's modulus of a fibre 
G shear modulus of matrix 
h thickness of sheet 
HE high elongation fibre 
k stress concentration factor 
L length of specimen 
LE low elongation fibre 
Mh number of links of each fibre 
N totalnumber of fibres 
Ph probability of break of one adjacent LE fibre 
P2h probability of break of at least one of two 

adjacent LE fibres 
p, q, r, s Weibult parameters 
R ratio of extensional rigidities of two fibres 
Re hybrid effect 
um displacement of m-th fibre 
Vra influence function 
Xlh expected number of scattered fibre breaks 
X2h expected number of the break of nearest LE 

fibres 
6 h ineffective length 
e2h composite failure strain 
h (subscript) hybrid 
m (subscript) m-th fibre 
* (superscript) value for HE fibre 
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1. Introduction 
Composite materials containing two or more types 
of fibres in a common matrix have become welt 
known as hybrid composites. A graphite fibre- 
reinforced composite is 'an attractive material 
because of its high strength- and stiffness-to- 
density ratios and it is much used in the aerospace 
field where light weight structures are required. On 
the other hand, this material has the disadvantage 
that the ultimate failure strain is small. To com- 
pensate for this defect, a hybrid composite has 
been designed. A Kevlar| hybrid, for 
example, has been selected as the material for the 
Boeing 767 aircraft [1]. In 1972 many papers on 
hybrid composites were reported [2-6].  It is 
interesting to note that a concept of hybridization 
was born shortly after graphite fibre composites 
began to be used. A state-of-the-art review of 
hybrid composites can be found in the papers by 
Chou and Kelly [7], Renton [8], and Fukuda [9]. 

According to Manders and Bader [10, 11], 
there are two ways of understanding the failure of 
a composite, that is, fracture mechanical (thermo- 
dynamic) and micromechanical (statistical) 
approaches. The present paper belongs to the 
latter category. 

Many statistical works on the strength of non- 
hybrid composites has been reported hitherto 
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[12-27] and these approaches are now applied to 
hybrid composites [28-31 ]. 

Zweben [28] was the first to deal with the 
strength of hybrid composites from a statistical 
view point, the idea of which may be called a "di- 
plet" of Batdorf's terminology [25, 26]. But his 
paper has unclear points which are discussed 
further. 

First, as was described in the Introduction of 
his paper, he intended to make clear the phenom- 
enon of a "hybrid effect." The term hybrid effect 
implies that the initial failure strain of a hybrid 
composite (which corresponds to the failure of 
low elongation fibres in a hybrid) is greater than 
failure strain of a low-elongation, non-hybrid com- 
posite. However, in Zweben's analysis, the failure 
of a HE fibre adjacent to a broken LE fibre is dis- 
cussed. Therefore, his paper seems a little far from 
the explanation of the hybrid effect. 

Next, he says his theory is a lower bound on 
composite failure strain. He focused on the failure 
of a HE fibre adjacent to one discontinuous LE 
fibre. In the case of a non-hybrid composite, this 
approach will lead to a lower bound, as has been 
discussed in [13]. This may not be true in a hybrid 
composite for the reason that when one LE fibre is 
broken, next failure is expected not on the 
adjacent HE fibre but on the adjacent LE fibre 
because the failure strain of HE fibres is much 
larger than that of LE fibres. Thus one HE fibre 
can be surrounded by two discontinuous LE 
fibres. In this case the stress (or strain) concentra. 
tion factor (SCF) of the HE fibre becomes larger 
than kh [28]. 

Lastly, the ineffective length and the SCF 
calculated by Zweben are not accurate because he 
used too small a model. In a non-hybrid compo- 
site, his approximate model [32] predicts smaller 
SCFs than those of Hedgepeth's shear-lag analysis 
of an infinite medium [33]. This discrepancy will 
occur in the hybrid composite also. The smaller 
SCF predicts a larger composite strength; this 
could be dangerous. 

These points are modified in this paper, 
although the primary idea is credited to Zweben. 

2 ,  A n a l y s i s  
There are two kinds of unidirectional hybrid com- 
posites, that is, an interply (interlaminated) hybrid 
and an intraply (intermingled) hybrid (cf. Fig. 1). 
We consider here an intraply hybrid sheet (Fig. lb) 
in which two kinds of fibres assume alternating 
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Figure I Cross-sectional view of hybrid composites. 

positions with equal distance, d. A bundle of fibres 
(impregnated yarn) can be considered as if it were 
an individual fibre [28]. The analytical model con- 
sidered here is shown in Fig. 2, where one LE fibre 
is discontinuous. A tensile load is applied in the 
fibre direction. The axial length of the specimen is 
L and 5h is so called an ineffective length [12]. 
Thus each fibre consists of Mh = L/~h links. The 
total fibres in the composite is N, of which N / 2  are 
LE, and N / 2  are HE fibres. 

We assume here that the cumulative distribu- 
tion functions for the failure strains of the LE and 
HE fibres of the length l are given, respectively, by 
a Weibull distribution of the form 

F ( e )  = 1 - -  e x p ( - - p l e  q) 
(1) 

F*(e )  = 1 --  exp(- -r le  ~) 

where, p, q, r and s are Weibull parameters and an 
asterisk (*) is used for defining quantities related 
to HE fibres. 

Consider, for example, a hybrid composite of a 
graphite/glass combination. The ultimate failure 
strain of a graphite fibre (LE fibre) is approxi- 
mately one third of that of a glass fibre (HE fibre). 
Then it is natural to consider that an LE fibre will 
break first. When the composite is subjected to a 
strain e, the expected number of scattered fibre 

t i 
] I 
I I 
I i 

P I 
0~ 

Figure 2 Model of analysis. 
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Figure 3 Failure of fibre(s): (a) 
a model of only one broken 
fibre; (b) a model of all LE 
fibres being broken. 
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breaks in the N / 2  LE fibres is 

X , h  = {MhgVF(e) (2) 

We will now discuss what happens next after 
one LE fibre is broken. When an LE fibre is 
broken, stress (or strain) concentration will occur 
to continuous fibres adjacent to the broken fibre. 
Suppose the SCFs of fibres A and B of Fig. 3a are 
k~ and kh, respectively. These values are derived in 
the Appendix. Although kh is smaller than k~, the 
fibre B will possibly break prior to the failure of A 
because the ultimate failure strain of LE fibres is 
smaller than that of HE fibres. 

We will consider first the probability of the 
nearest LE fibre (fibre B) being broken. The prob- 
abaility that fibre B will break under the strain 
concentration k h is 

F(kh e) -- F ( e )  
e h  - (3)  

1 - -  F ( e )  

The explanation of the denominator is briefly 
shown in [14] and [34]. 

The model considered is symmetric. Therefore, 
the probability of failure of the fibre B' of Fig. 3a 
is the same as Equation 3. Thus the probability 
that at least one of the two overstressed LE fibres 
will break is 

P2h = 1 - ( 1 - P r O  2 (4) 

The expected number of sites where a scattered 
LE fibre break is followed by the fracture of at 
least one of the nearest overstressed LE fibres is 

X2h = X l h e 2 h  (S)  

I f  we define a failure of composites as the 
fracture of one of the nearest LE fibres, this event 
is expressed as: 

X2h(e2h) = 1 (6) 

where e2h i the composite strain at which the near- 
est LE fibre will break. We pay attention here to 
the failure of the nearest LE fibre and hence this 
may be called a di-plet [25, 26]. But there exists 
a continuous HE fibre between two LE fibres of 
interest. Thus our model is a little different from 
the di-plet. 

Although we can solve Equation 6 directly by 
substituting Equations 1 to 5, the following 
assumptions are introduced [28] in order to get a 
good prospect: 

1 - -  F ( e )  ~-- 1 

P2h ~- 2Ph 

exp ( - -p l e  q) "" 1 --  ple q 

in Equation 3 

in Equation 4 

in Equation 1 

(7) 
Thus the failure strain is calculated as 

e2h = [NL6hp2(k~ -- 1)] -~/2q (8) 

Next we will discuss the failure strain of fibre A 
of Fig. 3a being broken. In this case, Equation 3 
should be changed to 

F*(k~e)  - -  F*(e)  
P~ = 1 - - F * ( e )  (9) 

and the final result is 

e~h = [NLghpr(k  ~s --  1)1 -u(q+s) (lO) 
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This is the same as Equation A10 of Zweben's 
paper [28], except for the notation. 

As was described before, the LE fibres are easy 
to break. Therefore, it is possible that all LE fibres 
break prior to the failure of  the HE fibres (cf. Fig. 
3b). In this case, the SCF of the HE fibre (fibre C 
of Fig. 3b) becomes 

k~ = t + EA/E*A* (11) 

Equation 11 just indicates that the applied load is 
all transferred by the HE fibres at the cross section 
considered. The mathematical expression of the 
failure strain of this case is the same as Equation 8. 

In the case of  non-hybrid composite, 

e2 = [2NL6p2(k q -  1)] -1/2q (12) 

is the lower bound of the failure strain. 
As has been mentioned in the Introduction, the 

hybrid effect is the enhancement of the initial fail- 
ure strain which corresponds to the failure of  LE 
fibres. Therefore, Equation 7 should be compared 
with Equation 12 in order to discuss the hybrid 
effect. The hybrid effect may be calculated as 

[6h(k~a- 1)] -1/2q 

Ro = t2- V BJ (13) 

from Equations 8 and 12. It is necessary to know 
the values 6, 6h, k, kh, and q to calculate Re. Other 
Weibull parameters, p, r, s, are not necessary. 

If we want to know the enhancement of ulti- 
mate failure strain, p, r, and s also becomes neces- 
sary from Equation 10. The mean values of 
Weibull distributions of  Equation t can be expres- 
sed as follows: 

e(/) = (p/)-vqF(1 + 1/q) 
(14) 

r = (rl)-l/sF(1 + l/s) 

where F is the gamma function. The Weibull par- 
ameters p and r can therefore be expressed by 
and g*, although the expression is complicated. In 
a special case of q = s, the enhancement of final 
failure strain R* (= e~h/e2) is easy to calculate and 
the result is R~=(2~ll/2qi,*k t 1/2 

6h] \ 7  k~h] (15) 

where k ~ -  1 2 k~ and k q - -  1 ~ k q are assumed. 
The failure strain enhancements can be calculated 
from Equations 13 and 15. 

3. Numerical calculations and discussions 
We consider here two combinations of materials: 

graphite/glass [35] and Kevlar| [36] 
hybrids. 

The first example is the experimental data of 
Bunsell and Harris [35] where high modulus 
graphite/E-glass laminated hybrids were tested. 
The ratio of extensional rigidities of two kinds of 
fibres is defined as 

R = E*A*/F~A (16) 

Young's moduli of graphite and glass composites 
were 142 and 41 GPa, respectively. Strictly speak- 
ing, Young's moduli of graphite and glass fibres 
themselves must be used in the calculation of 
Equation 16. But it may not have so much error 
even if we put R = 4 1 / 1 4 2 = 0 . 2 8 9 ,  for the 
present case. The SCFs are calculated in the 
Appendix to be kh = 1.129 and k~ = 1.862. The 
SCF in a non-hybrid composite is k = 1.333. The 
dimensionless ineffective length, 5/(EAd/GH) v2 
and 6h/(EAd/Gh) 1/2, are 1.571 and 1.713, respec- 
tively (see Appendix). 

The representative value of Weibull parameter, 
q, is said to be 5 to 8 for single glass fibres or 
graphite fibres and 20 for a yarn or bundle of 
fibres. In this paper, q = 20 is adopted in accord- 
ance with Zweben [28], which approximately cor- 
responds to 6% of coefficient of variation of the 
failure strain of fibres. 

Substituting these values into Equation 13 we 
get R e =  1.11. We have not accounted for the 
hybrid effect induced by the residual thermal 
strain which is about 10% of failure strain [35]. If 
we add this amount, the hybrid effect should be 
modified to Re = 1.21. Since we considered 50:50 
hybrids, this value must be compared with the 
experimental data of four-layer hybrids, 
Re(exp) = 1.31 [35]. Our prediction is fairly close 
to the experimental value. 

The enhancement of the ultimate failure strain 
can be calculated from Equation 15 as Re = 2.23 
where the experimental values of g = 0.26 and 
if*= 1.75 were used. This value corresponds to 
Zweben's R e = 2.26 where we must again point 
out that these are not for the enhancement of 
initial failure strain (hybrid effect) but for the 
enhancement of ultimate failure strain. 

If  all LE fibres are broken prior to the first fail- 
ure of HE fibres, the SCF becomes, from Equation 
11, k~-- 1 + 1/0.289 = 4.46. Then, from Equa- 
tion 15, we get R* = 1.44. This shows the failure 
of HE fibres occurs between (1.44-2.23)~. 

From these data we can draw the stress-strain 
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Figure 4 Predicted stress-strain 
behaviour of CFRP, GFRP and 
hybrid composites. 

curve as shown in Fig. 4. This figure resembles the 
results by Bunsell and Harris [35]. That is, the 
initial failure strain is larger than that of the LE 
fibre composite and the ultimate failure strain is 
smaller than that of the HE fibre composite. 
Although the shape of the curve is fairly different 
from the experimental data where a saw-shape pat- 
tern appears, this can not be interpreted by our 
present model; some other model like the Monte 
Carlo simulation [29-31 ] is necessary in order to 
explain the experimental stress-straLu curve in 
more detail. 

Zweben [28] measured hybrid effects for 
Kevlar49/graphite (Thornel 300). In this case, 
Young's moduli of graphite and Kevlar | were 34 
and 19x 106psi, respectively, from Table I of 
[36]. R is calculated as R =0.56.  From the 
Appendix, k h =  1.074, k ~ =  1.528, and G~ 
(EAd/Gh) 1/2= 1.633 are obtained. Again assure- 
Lug q = 20, Re = 1.13 is calculated from Equation 
13. The experimental values were Re = 1.04 for 
unidirectional hybrids and Re = 1.31 for blanched 
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fabrics [28]. Our predicted value falls in between 
these two experimental values. 

As for the ultimate failure strain R e - 1.24 is 
the prediced value where ~ = 1.04 and ~*= 1.80 
were used [28]. In the case that all LE fibres are 
broken, the SCF becomes, from Equation 11, 
k~a = 2.78 and Equation 14 reduces to R * =  
0.916. This value is peculiar because it is smaller 
than unity. We may conclude that if all LE fibres 
are broken, the failure of HE fibres will occur cata- 
strophically in a case of Kevlar| hybrids. 

In this paper, we used a criterion close to a di- 
plet to evaluate the failure of hybrid composites. 
In a more precise manner, a 3-plet or 4-plet model 
should be used. This kind of problem is basically 
possible to solve because we have already solved a 
general solution of the SCF in r successive broken 
fibres in [38], although it may need some effort. 

4. Conclusions 
Although there are many excellent points in the 
study of Zweben [28], there are some unclear 



points. We tried a modification of his theory in 
this paper. The meaning of initial failure (accord- 
ing to the hybrid effect) was made clear in the 
present statistical calculation. More precise SCFs 
than Zweben's approximate values were calculated 
by means of shear-lag analysis. By these modifica- 
tions, tensile behaviour of hybrid composite has 
become to be predicted in more precise manner. 
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Append ix :  Stress concentrat ion factors and 
ineffect ive length 

Since we have already reported the analysis for the 
SCF of an intraply hybrid sheet [37, 38], an inter- 
ply laminate [31 ], and an intraply laminate [39], 
only a brief summary of the procedure is shown 
here. 

Fig. 2 shows a model of analysis where a tensile 
load is applied to the fibre direction. Applying the 
well known shear-lag assumptions [33, 40, 41], the 
equilibrium of force of the m-th fibres (LE and 
HE, respectively) are 

d2ura Gh. . , 
EA - - ~  + y (Urn + u rn - ,  - -  2 u r n )  = 0 

(A1) 
E'A* d2u* Gh 

--~-~- + - T  (urn. , + u., - 2u;,) = o 

where um is the displacement of the m-th fibre and 
EA and G denote, respectively, the fibre exten- 
sional stiffness and the shear modulus of the 
matrix, h and d are defined in Fig. 2. 

The force-displacement relations are 

dum E*A * du* (A2) 
P m =  EA ~x P* = dx 

where Pm is the axial load of m-th fibre. The 
boundary conditions are 

Pm(O)=O (m=O) um(O)=O (my aO) 

E'A* u*(0)  = 0 p*(oo) = ~ p (A3) 
p m(oo) = p, 

By introducing the following dimensionless par- 
ameters 

Pm = pm/p P* = p~Jp 

Um= umlP(dlEAGh) 1/2 U* = u* /p(d/EAGh) v2 

= x/(EAd/Gh) '/2 R = E*A*/EA (A4) 

Equations A1 to A3 can be expressed as follows: 

v ~ , + v *  + v * _ , - 2 v r n  = o 
(A5) 

RU*" + Um+, + Urn-2V* = 0 
* ! 

Pm = U " Pm = Rl~m (A6) 

Prn(O)=O (m=O) Um(O)=O (m4=O) 

V*(0) = 0 (A7) 

e , , (oo)  = l e * ( o o )  = R 

where ( )' = d( )/d~. 
The following influence functions initially pro- 

posed by Hedgepeth [33] are applied here: 

u.,(~) = ~ + Vm(~)Uo(O) 
(A8) 

u~*(~) = ~ + v~*(~)Uo(O) 

where V and V* are the influence functions. Thus 
Equations A5 and A7 reduce to 

rP 

v . , -  2vm + v* + v~_, = o 
(A9) 

gv*" - -2V*  + Vrn+l + Vrn = 0 

Vrn(O)= l (m=O) Vm(O)=O (m 4=O) 

V*(0) = 0 (A 10) 

v~(oo )  = 0 ~ , ( o o )  = 0 

To solve Equations A9 the following Fourier 
series expressions are introduced 

= ~ Vmexp(--imO) 

V* = ~ V*exp(--imO) 

or inversely, 

1 " 
Vm = -j-~ f~,~ V exp (imO)dO 

1 
~'*rn = ~-~ f,_ ~'* exp(imO)dO 

(A11) 

(A12) 
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Then, multiplying Equations 9 by exp (--imO) and 
summing over all m give 

V " - - 2 V +  [1 + exp(--i0)]V* = 0 
(A13) 

RF'*--2V* + [1 + exp(i0)]ff = 0 

Equations A10 can also be expressed by Vand V*, 
although the detail is not shown here. 

The solutions of Equations A13 are 



= Cl exp(--Xx~) + C2exp(--k2~) 

V* = C3exp(-X1~) + Caexp(--X2~) 

where 
~k 1 = [a - I -  (a 2 - -  b)l/2] 1/2 

x2 = [a - (a = -  b)"21  ' '~  

(A14) 

a = I + I / R  b = 2 (1 - - cos0 ) /R  

Ca = (2--X~)A C2 = - ( 2 - - X ] ) A  

C3 = (2 - X])(2 - X~)A/[1 + exp( - i0 ) ]  

C4 = - - C 3  A = 1/(X~--X~) (A15) 

The SCF of the adjacent HE fibre (k~) and 
next-adjacent LE fibre (k~  are, from the 
definition, 

k~ = Po*(O)/P~(oo) = 1 + Vo*(O)'Uo(O) 
(A16) 

kh = P ~ ( O ) / P , ( ~ 1 7 6  = 1 + VI(O)'Uo(O) 

where Uo(0) can be calculated from the first con- 
dition of Equations A7. 

Next we will calculate the ineffective length, 
$h. There are two ways of defining the ineffective 
length. Rosen [12] defined it as the length from 
the fibre end to the point where the axial load of 
the fibre recovers to r (= 0.9 to 0.95) of the load 
remote from the broken end. Another is defined 
as [28] 

which has been defined by replacing the actual 
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Figure A1 Stress concentration factor and ineffective length against extensional stiffness ratio, R. 
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fibre stress (or strain) distribution with equivalent 

step function. We follow the latter definition. 

Substituting necessary equations into Equation 

A 17, we get finally 

=  V~ 

= 2(EAd/Gh)X/2Uo(O) (A18) 

The following expression may be convenient: 

6h/(EAd/Gh) ~/2= 2Uo(0) (A19) 

In the case of ordinary composite (R = 1), 

Uo(0) was calculated as lr/4 [37]. Thus the dimen- 

sionless ineffective length becomes r,/2 which is a 

little larger than Zweben's result, 1.531 (cf. Equa- 

t ion A26 of [28]). 

Fig. A1 depicts the SCF and ineffective length 

against extensional stiffness ratio of fibres (R). 

With decreasing R, both k h and kh increase. This 
is reasonable because the effect of  broken LE 
fibre is large at small R,  from the definition of R, 

Equation 16. The SCF of the next-adjacent LE 

fibre, kh, is relatively small and this is advan- 

tageous for hybrid composites. At R =0 .289 ,  
which corresponds to high modulus graphite/glass 

hybrids, the SCF becomes kh = 1.129 and k h-*- 

1.862 and 6hl(EAdlGh) 1/2 is 1.713. In the case of 

R = 0.56, k h =  1.074, k ~ =  1.528, and 6h/ 
(EAd/Gh)  1/2= 1.633 are obtained. 

Zweben's approximate solutions are also shown 

in Fig. A1 by broken lines. His results predicts a 
little smaller SCF and ineffective length. 
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